A Convergence Proof for the Particle Swarm Optimiser

نویسندگان

  • Frans van den Bergh
  • Andries Petrus Engelbrecht
چکیده

The Particle Swarm Optimiser (PSO) is a population based stochastic optimisation algorithm, empirically shown to be efficient and robust. This paper provides a proof to show that the original PSO does not have guaranteed convergence to a local optimum. A flaw in the original PSO is identified which causes stagnation of the swarm. Correction of this flaw results in a PSO algorithm with guaranteed convergence to a local minimum. Further extensions with provable global convergence are also described. Experimental results are provided to elucidate the behavior of the modified PSO as well as PSO variations with global convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Particle Swarm and Predator Prey Optimisation

In this paper we present and discuss the results of experimentally comparing the performance of several variants of the standard swarm particle optimiser and a new approach to swarm based optimisation. The new algorithm, which we call predator prey optimiser, combines the ideas of particle swarm optimisation with a predator prey inspired strategy, which is used to maintain diversity in the swar...

متن کامل

Winding Deformation Identification Using A Particle Swarm Optimiser with Passive Congregation for Power Transformers

This paper presents a new approach to identify distributed parameters of a lumped-element model for a power transformer. A simplified circuit of a lumped-element model is developed to calculate frequency responses of transformer windings in a wide range of frequency domain. In order to seek optimal parameters of the simplified circuit of the transformer, an intelligent learning technique, based...

متن کامل

Hybrid Particle Swarm Optimiser with Breeding and Subpopulations

In this paper we present two hybrid Particle Swarm Optimisers combining the idea of the particle swarm with concepts from Evolutionary Algorithms. The hybrid PSOs combine the traditional velocity and position update rules with the ideas of breeding and subpopulations. Both hybrid models were tested and compared with the standard PSO and standard GA models. This is done to illustrate that PSOs w...

متن کامل

Training Product Unit Networks using Cooperative Particle Swarm Optimisers

The Cooperative Particle Swarm Optimiser (CPSO) is a variant of the Particle Swarm Optimiser (PSO) that splits the problem vector, for example a neural network weight vector, across several swarms. This paper investigates the influence that the number of swarms used (also called the split factor) has on the training performance of a Product Unit Neural Network. Results are presented, comparing ...

متن کامل

A New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement

In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the  combination of  the  conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fundam. Inform.

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2010